

GAMR Unit \& NASA-X1
(1)

Anchor: Deployment, Expansion \& Pneumatics

"We thought Starship 3.0's [1] first mission was to Mars. After the success of
Starship 2.0's departure to Mars - over time, we realised that if we needed to Starship 2.0 's departure to Mars - over time, we realised that if we needed to
colonise other planets more efficiently and at regular intervals, we first need colonise ohter planets more efficiently and at regular intervals, we first need
to help build a starport. So, we shifted our focus to assist in the construction
of the first international starport and contibuted of the first international starport and contributed our research from building
Starships to assist in launching this first spaceport mission - launching the Starships to assist in
expandable sphere."
Measuring 36 meters in diameter, the expandable 'Anchor' is the
first unmanned mission to constructing the Urchin. Reanimating the amfirst unmanned mission to constructing the Urchin. Reanimating the am
bition and technologies to build the abandoned Sea Dragon $[2]$ of the 60 's
stace space race, the Anchor will be deployed via SpaceX's scaled-up version of
the Starship 2.0 and launched in the Pacific Ocean.[3]

\qquad

1. Resilient Skin Ecology

(+

Ion't know how to describe it. It just felt... alive."- David Bowman.
The artificial skin is an assembly of independent systems generating an ecology of resil ience, rejuvenation and sustenance. Taking inspiration from the sea urchin's biological surface, the Ur-
chin's skin' primarily consists of a needle-rocket system that connects on a series of docking stations on the Urchin's surface. These needles are categorised into three systems: Food Needle, Water Need and Energy Needle. The Needles can be maintained and accessed internally. Over time, an expanded
andscape of sustenance and research is constructed and grows within the first inner layer of the landscape of sustenance and research is constructed and grows within the first inner layer of the
Urchin. As spart of this ecology, a series of smaller spherical solar cells are dispersed on the surface Urchin. As part of this ecology, a series of
as an auxiliary power harvesting system.
The skin is also home to the 'Collectors'. They are specialised autonomous trash collectors
that would gather existing space junk to be reused and repurposed to create future exploratory and repair drones - alloso residing on the surface. Aill be home to self-repairing cellular material to As technology improves, the skin will be home to self-repairing celluar materials to assist
in the resilience and longevity of the Urchin. These self-repair propositions are in place to minimise in the resilience and longevity of the Urchin. These self-repair p
earth-departing repair missions that are expensive facilitate.[6]

Independent Systems

I

P4

1b. Energy Needle

The Energy Needles are independent systems of foldable solar panels that act as the main source of renewable energy. These are supplemented by the solar orbs capturing scattered light as auxiliary
systems. The energy needles could lengthen and track the sun to maximise efficiency systems. The energy needles could lengthen and track the sun to maximise efficiency.
Energy Legend: 1. Retractable Solr Panel, 2. Lithium Cell Frame

1c. Expanded Productive Landscape System
(

"It's been 48 sols since I planted the potatoes so its time to rip and resow. They grew even better than lexpected. We now have 40 healthy potato plants. We dug them up being careful to leave their plants
alive. The smaller ones well resedd. The larger ones are our food supply. All natural. Organic. Urchin
Str alive. The smaller ones well reseed. The larger ones are our food supply. Al/ natural. Organic. Urch
Starport grown potatoses. . You don't hear that everyday do you." Mark Watney, space Botanistl]
The expanded landscape is located within the first layer of the inner core. It generates The expanded latdscape is located within the first layer of the inner core. It generates an
ecological e elationship with the fundamental food, water and energy needles to augment the starport's production of these essential resources. It harnesses aeroponics and hydroponics food production encompasses the inner sufface. A series of varying UV artificial lights are utilised to enable a variety
of plant-based consumables to grow. of plant-based consumables to grow.
scape that the space community can enjo imagined as a place of production but an experiential land

P7

1d. Solar Orbs

Smaller spherical solar cells are dispersed on the surface as an auxiliary power harvesting system

1e. Autonomous Regenerative System

Envisioned as a more future-centric mission phase when the starport is complete, the project propos-
es regenerative materials at a cellular level to generate an autonomouse renegerative system in sync
es regenerative materials at a cellular level to generate an autonomouse renegerative system in syn with repair and exploration operational drones.

P8

P11

2. Space Junk Ecology

2a. The Collector

Inspired by the anatomy of basking sharks[10], the Collectors are autonomous mobile space trash collectors that capture and recycle loose floating materials within the LEO, GEO and graveyard orbi-
The structure consists of a complex outer layer that is rough and jiggered - providing endurance to th Collector's ability to withstand debris colliding and hitting with the external surviding endurare before becomin pulled towards the vacuum mouth. The structure propels itself through space via blasters. A series
of magnets attract and pull metal junks towards it and is maintained in position at the centre of the of magnets a
taking rubbish from space, storing it in the middle and delivering it back to base bunke.
There are about 22,000 large objects orbiting the Earth, including work ditions. If you include all the equipment dropped by astronauts while cm in size, there are about one million hits of space junk in Earth' orbit."- Jez Turner [9]
y space repair and construction missions, the Urchin will establish circular system of capturing, repurposing and recycling of space de-
bris. . aptured debris will be reused to optentially create future drones bris. Captured debris will be reused to potentially create future drones
ships and spaces for the starport. It is imagined that the starport could capture space junk primarily from the 'graveyard orbit' and specifically Tunt for required materials within the Low Earth Orbit and Geostationary
Earth Orbit zones. The ambition is that, progressively, materials that are required for space are already in space for new life.
(1)

2b. Workshop

'Armageddon':[11]
Whageddon':[11]
Located adiacent to the docking stations within the permatic structures, the workshop was envisioned as an internal space used to assist the docking stations and in the re-processing of collected space trash. It is
also fitted out with the junk and debris collected from space.

2c. Venture Drones

Young Murph: [referring to the drone] What are you gonna do with it? Cooper: I'm going to give it something sociall/ responssible to do. Like drive a combine.
Young Murph: Can't we iust let it go? It wasn't hurting anybody. Young Murph: Can't we Just letit go? It wasn't hurting anybody.
Imagined as a mission phase towards the advanced stages us." - Interstellar [12] Venture Drones (VD) are developed, constructed and designed with the recycled space devalopment ed over time. Their purpose is to eventually become a swarm of small and adaptable Al-controlle drones that venture into the unknown in search of extraterrestrial life. They also assist in the repai

P12

P15

3b. The Linkage
 from that dream? How
-Morpheus, Matrix [17] are a seri
"Have you ever had a dream, Neo, that you were so sure was real? What if you were unable to wake
Pre a series of multi-bridged ane-centric mission when the first Urchin is a success, the Linkage systern

